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SUMMARY 

In contrast to the kinetic models, the ideal and semi-ideal models of chromato- 
graphy assume the distribution of the compounds studied to be constantly at equilib- 
rium (ideal model) or very close to equilibrium (semi-ideal model). An exact solution 
of the ideal model can be obtained under close form for a pure compound with any 
isotherm and for a binary mixture with competitive Langmuir isotherms. No exact 
solution of the semi-ideal model can be derived but numerical solutions are available 
for all isotherms. Approximate analytical solutions for this model can be obtained by 
assuming that the concentration of the compound studied in the mobile phase is small 
and, accordingly, that the equilibrium isotherm is parabolic and by neglecting some 
terms in the derivation. Depending on the assumptions made, the Houghton and the 
Haarhoff-Van der Linde equations are obtained. 

These different solutions are compared. It is shown that the Haarhoff-Van der 
Linde equation is a much better approximation than the Houghton equation and that 
its range of validity depends essentially on the deviation between the true isotherm 
and its two-term expansion in the concentration range sampled by the band during its 
elution. It is usually valid for loading factors below 0.2% for an ideal column and 
bC Max I 0.05 for real columns (the loading factor is the ratio of the sample size and 
the column saturation capacity, b is the second coefficient of a Langmuir isotherm 
and Gax is the maximum concentration of the band). In practice, however, it can be 
used for loading factors up to 1% (bC Max I 0.1 for real columns). The ideal model, in 
contrast, gives a valid presentation of experimental band profiles only at high sample 
size and column efficiencies. The reduced sample size, m = N Lf [PO/( 1 + ,?a)]’ (N = 
column plate number, Lf = loading factor, kfO = column capacity factor), must be 
higher than 35. In the intermediate range, only numerical solutions can predict the 
band profiles accurately. 

In the case of two components, the exact solution of the ideal model can be 
obtained under close form with competitive Langmuir isotherms. Numerical solu- 
tions can be obtained to simulate real columns. No other analytical solution, even 
approximate, is available. A correction made to the ideal model to account for the 
band-broadening effect of a finite efficiency gives good results and permits the in- 
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vestigation of the optimization of the experimental conditions of a separation for 
maximum production rate. 

INTRODUCTION 

Because of the importance recently acquired by preparative chromatography as 
a separation technique for the industrial extraction and purification of synthesis 
intermediates and of products in biotechnology, there is renewed interest in 
fundamental chromatography. In order to optimize a separation process, we need to 
be able to predict its results. In the case of preparative chromatography, we want an 
accurate prediction of the concentration signal observed at the outlet of the column as 
a function of the experimental parameters and of the initial and boundary conditions. 

The derivation of accurate predictions requires the use of a sophisticated model. 
Such a model can rarely be solved exactly by an analytical solution, i.e., in closed form. 
Approximations may be necessary or numerical solutions may be calculated. The 
former can be differentiated and the optimum conditions for maximum production 
rate under any combination of constraints regarding collected fraction purity and 
component recovery yield can be derived in a straightforward way. The latter have the 
advantage of being accurate, calculable with the required precision and available for 
almost any combination of the experimental parameters, but they require the selection 
of the proper numerical value for each parameter involved. Further, optimization is 
difficult to carry out using the numerical approach, as it needs repetitive calculations of 
chromatograms, for a long series of sets of variable experimental parameters. 

Therefore, analytical solutions are highly desirable in order to investigate in 
detail the influence on the production rate of the column length, the size of the packing 
particles, the mobile phase flow velocity and composition, i.e., the selectivity of the 
phase system, the non-linear behavior of the isotherm, the sample size and relative 
composition, the axial dispersion and the kinetics of radial mass transfer. Analytical 
solutions are so useful that we are ready to sacrifice some accuracy, make simplifying 
assumptions, in order to formulate a model which can be resolved into closed forms. It 
is important to know, however, what the importance of the error made in these simpler 
models is and the extent to which the profiles they predict for the concentration signal 
at the column exit deviate from the true profiles. The aim of this paper is to review the 
various analytical solutions that have been derived, assuming that the chromato- 
graphic phase system is constantly at equilibrium or very near it (i.e., high column 
efficiency). In forthcoming papers, we shall present a similar investigation of the 
kinetic models of chromatography and a comparison between semi-equilibrium and 
kinetic models’. 

Although separation methods, and chromatography in particular, concern the 
extraction and purification of certain components of mixtures, the main thrust of this 
work will be on the prediction of the elution profile of pure compounds. There are 
several modes under which chromatography can be carried out, e.g., isocratic, step and 
gradient elution, frontal analysis and displacement, but most of the theoretical effort 
has dealt with isocratic elution. More importantly, the difficulties with the two- 
component problem are such that very few papers have discussed it. 
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EQUILIBRIUM AND SEMI-EQUILIBRIUM MODELS 

The most general approach to chromatography is a model which expresses that 
the mass of each component in the column is constant and relates the rate of mass 
transfer of each component to the local composition of the chromatographic system. 
The former condition is easy to write, and is called the mass balance equation. The 
theoretical difficulties begin with the formulation of the second set of equations, as 
kinetics are much more complicated than thermodynamics. Various equations, with 
different merits and drawbacks, have been written, which will be reviewed later’. 
Because it has long been recognized that the mass transfer in the non-consolidated beds 
of porous particles used in chromatographic columns are usually very fast and that in 
most instances these columns are operated near equilibrium, a very popular and very 
fruitful approach is to assume, in a first step, that the mass transfer is infinitely fast and 
the column efficiency infinite. Then a perturbative correction is made, to take that 
efficiency into account. Another approach, equally fruitful, but for a different range of 
sample sizes, is to lump the coefficients of radial mass transfers into a coefficient of 
apparent axial dispersion and to consider the effect of a large concentration either as 
negligible (linear chromatography) or as a perturbation. Both approaches are, of 
course, doomed to failure when the mass transfer kinetics are very slow. 

Before discussing these different approaches, we review first the basic equations 
of the model and the rationale for the development of the equilibrium and 
semi-equilibrium models (i.e., the ideal and semi-ideal models). 

Mass balance equation 
This equation was derived by Wilson’, 50 years ago. It states that the amount of 

a component which enters an infinitely thin slice of column in an infinitely short period 
of time is equal to the sum of what leaves the slice and what remains in it. It is written as 

where C, and C are the concentrations of the studied compound in the stationary and 
the mobile phase, respectively; z and tare the abscissa along the column (assumed to be 
one-dimensional) and time, respectively; u is the mobile phase velocity; F is the phase 
ratio, (1 - a)/~, where E is the packing porosity, and D is the coefficient of axial 
dispersion, which includes the axial molecular diffusion, the packing tortuosity and the 
contribution of packing heterogeneity to the band dispersion. 

The conditions under which this equation is a valid mass balance (non-com- 
pressible mobile phase, constant diffusion coefficient, constant partial molar volume 
of the solute and no sorption effect) have been discussed in previous publications and 
are not seriously restrictive3. An equation such as eqn. 1 should be written for each 
component of the system, except the mobile phase when it is pure or the weakest 
component of this phase 4*5 In practice, however, when the mobile phase is a mixed . 
solvent and the strong components or additives of this solution are much less strongly 
adsorbed than the component of the sample, the mass balances of the components of 
the mobile phase can be neglected, provided that the isotherm of the sample 
components are measured by reference to the mobile phase4. This simplification is 
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valid as long as the column capacity factors of the mobile phase components at infinite 
dilution in the pure weak solvent are at least five times smaller than the column 
capacity factors of the sample components. 

Kinetic equation 
Eqn. 1 contains two functions of z and t, the concentrations of the studied 

compound in the stationary and the mobile phase. In order to solve this equation, we 
need a relationship between these two concentrations. Should we be able to formulate 
it, a kinetic equation can provide the needed intermediate. 

A more detailed discussion of this problem will be presented in a forthcoming 
paper’. Suflice it to say here that among the models which have been used to describe 
such kinetics, the three simplest are the following (in these equations, C, is the local 
concentration of component in the stationary phase, q, the concentration in 
equilibrium with C in the mobile phase): 

The Langmuir kinetics model: 

- = k,(qs - C,)C - k&s 
at 

where qs is the column saturation capacity (in the same units as C,) and k, and kd are 
the adsorption and desorption rate constants of the compound, respectively. This 
equation has been used by Thomas 6, Goldstein’ and later by Wade et aL8. 

The linear kinetics model: 

%,,-,, 
at 1 2S 

where kl and k2 are rate constants, which has been used by Lapidus and Amundsong. 
The linear driving force model: 

ac 
---! = kf(q - C,) 
at 

where q is the equilibrium value of C,, when the mobile phase concentration is C (see 
discussion of the equilibrium isotherm, next section), and kf is the lumped mass 
transfer coefficient. Eqn. 4 has been used by GlueckauflO, Hiester and Vermeulen” 
and later by Lin et aLi2 and Golshan-Shirazi et a1.13. In linear chromatography 
(infinitely small sample size), this last model is a particular case of the linear kinetics 
model (q = koC, kfPo = kl, kf = k,). 

The properties, advantages and drawbacks of these models are discussed 
elsewhere, together with the characteristics of their solutions’. 

Initial and boundary conditions 
All chromatographic problems can be solved by using the appropriate system of 

eqns. 1 and 2,3 or 4, i.e., the system composed of as many equations of either group as 
there are components involved in the system being studied. The solution, C(z,t), the 
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concentration of the compound in the eluent at position z and time t, is determined, 
however, only when the initial and the boundary conditions are selected. The proper 
choice of these conditions permits the prediction of elution (constant mobile phase 
composition at column inlet, pulse injection), gradient elution (pulse injection, 
followed by pumping a mobile phase which is a ramp of strong solvent), displacement 
[column initially tilled with a mobile phase, pulse injection, followed by the injection of 
a concentration plateau of a displacer (i.e., a strongly retained compound) in the 
mobile phase], frontal analysis (injection of a concentration plateau of sample in the 
mobile phase, into a column filled with pure mobile phase). More complex boundary 
conditions can be easily derived to simulate sophisticated experiments. 

In the most popular mode used in preparative chromatography, elution, the 
initial conditions correspond to a column filled with pure solvent: 

C(z,O) = 0 (54 

and the boundary conditions correspond to a rectangular pulse injection of duration t, 
and height C,,: 

C(O,t) = c, o<t<t, (W 

and: 

C(O,r) = 0 t, < t (54 

Semi-equilibrium model in linear chromatography 
In the case of a linear isotherm, Lapidus and Amundsong derived an analytical 

solution of the system of partial differential equations combining the mass balance 
equation and a first-order mass transfer kinetic equation. This solution is valid only in 
analytical applications of chromatography, because of the limitation introduced by the 
assumption of a linear isotherm. 

Van Deemter et al. l4 were able to demonstrate that, when the sum of the mixing 
stage (2D/u) and the height of the mass transfer stage [22&e/(1 + kb)‘kf] is much 
smaller than the column length, L, the analytical solution derived by Lapidus and 
Amundson reduces to a Gaussian profile (Fe is the column capacity factor and kf the 
lumped mass transfer coefficient of eqn. 4). In this case, the exact analytical solution of 
Lapidus and Amundson is equivalent to the solution of the simplified plate theory of 
Martin and Synge . ’ 5 The Van Deemter equation provides the equivalence by relating 
the standard deviation of the Gaussian profile to which the solution of the Lapidus and 
Amundson equation reduces and the standard deviation of the plate model, through 
the value of the column plate height14: 

20 2ukb 
H = ; + (1 + Ko)2kf (6) 

When the experimental conditions are such that the plate height increases to the point 
that it is no longer much smaller than the column length, the plate theory fails, and the 
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more general solution of Lapidus and Amundson must be used for an accurate 
prediction of the band profile. 

Still within the framework of linear chromatography, Kucerai6 derived the 
solution of the most general model of chromatography, with a mass balance including 
axial dispersion and kinetic equations including the contributions to the resistance to 
radial mass transfers which are due to diffusion across the boundary film between the 
mobile and the stagnant mobile phase, to intraparticle diffusion and to first-order 
reaction kinetics for the retention mechanism. This solution, however, is in closed form 
in the Laplace domain only, and it cannot be converted into the time domain. When 
the elution profile is Gaussian, comparison between the values of the second moment 
predicted by the general diffusion model and by the linear driving force model shows 
that the lumped mass transfer coefficient is related to the pore diffusion and the film 
mass transfer resistance by the following equation: 

F d 
=p+ 

& 

EOkr 6k, & (7) 

where dP is the average particle size, k, is the external film mass transfer coefficient, Fis 
the phase ratio, B is the inner porosity of the packing particles and D, is the 
intraparticle diffusion coefficient. 

Horvath and Lin” and Huber’* derived relationships between the parameters 
of sophisticated mass transfer models and the column plate height. As often occurs in 
physical chemistry, difficulties arise when complex models have to be compared with 
experimental data, as the multiplication of the parameters introduced in the models in 
an effort to make them more exact increases arbitrarily the flexibility of the overall 
equation and at the same time makes the proper estimate of the various parameters 
more difficult and the final values less reliable. 

The problem becomes much more complicated when the isotherm is not linear. 
There is no general analytical solution available which could compare with the 
solution of Lapidus and Amundson and could provide a tool for the investigation of 
column performance which would be as”powerful and as general as the column HETP. 

Semi-equilibrium model in non-linear chromatography 
In his non-equilibrium theory, Giddings” attempted to relate the band 

broadening due to the resistances to radial mass transfer and the experimental 
parameters. Central to this theoretical development is the assumption that the two 
phases of a chromatographic system are always close to equilibrium. This is certainly 
true in all modern, high-performance chromatographic techniques. The only possible 
exceptions are some implementations of ion-exchange chromatography and most 
applications of affinity chromatography, as the dissociation of the selective recogni- 
tion complex is generally a slow process. 

For the sake of simplicity, the concentrations in this subsection are referred to 
the total column volume, and not to the volumes of either mobile or stationary phases. 
We denote by Cf an equilibrium concentration and by can actual concentration. We 
can write 

@a) 
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and 

cs = C$(l + E,) WI 

where E, and a, account for the departure from equilibrium. These quantities are small, 
since the system is always near equilibrium. This is because, although the concentra- 
tion gradients may be large at times, they apply only over very short distances. a, and E, 
are related through 

&,CZ + EsCs* = 0 (9) 

Now, ignoring the longitudinal, diffusionel flux in the stationary phase, which is 
negligible, the flux of a compound, J, per unit column cross-sectional area, is 

The second term in this equation, AJ = UC,&,, results from non-equilibrium. It is 
formally equivalent to a diffusion term, with a pseudo-diffusion coefficient h, given by 

-AJ 

D’=dCldz= 

-UC:&, 

aqaz 
(11) 

in accordance with Fick’s law, where C is the total solute concentration, hence Cz = 
RC, R being the fraction of solute in the mobile phase, i.e., l/(1 + &). 

The beauty of this equation is that it shows that non-equilibrium effects, which 
result from lateral diffusion, can be treated as a contribution to axial dispersion. 
Accordingly, we can describe the chromatographic phenomenon by keeping the mass 
balance equation (eqn. l), eliminate the kinetic equation from the system, replace the 
concentration in the stationary phase C, in eqn. 1 by the value given by the equilibrium 
isotherm, q = f(c), and replace the axial dispersion coefficient, D, by an apparent 
axial dispersion coefficient, related to the column HETP by D, = HL/2t, (ref. 3). 

Haarhoff and Van der Linde2’ have given a more general demonstration of this 
result, which is valid for a slightly overloaded column, with a parabolic isotherm. It 
leads to the following equation for the mass balance of a compound: 

(12) 

where q is the concentration of the solute in the stationary phase in equilibrium with 
the concentration, C, in the mobile phase, given by the isotherm equation: 

4 =f(c> (13) 

We shall discuss later the validity of this assumption and show in which range of 
column efficiency the semi-equilibrium model is an accurate chromatographic model’. 
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Equilibrium model 
If we assume that there is no axial dispersion and that the kinetics of radial mass 

transfer are infinitely fast, the mobile and the stationary phases are constantly at 
equilibrium. Then the mass balance of the compound studied (eqn. 1) becomes 

(14) 

Eqn. 14 was the form under which the mass balance was derived originally by Wilson’, 
who also investigated its properties, but did not realize the possibility of the formation 
of shock or concentration discontinuities, which eqn. 14 can propa’gate as shown later 
by DeVault21 and as discussed recently by Lin et ~1.~~. Thus, Wilson’ concluded that 
the band width remains constant during the band migration, which is true only under 
linear conditions. Later, the problem was rediscussed by Weiss23 and more rigorously 
by DeVault2’, who explained the formation and propagation of concentration 
discontinuities. Glueckauf24 extended the theoretical results of DeVault to the case of 
a sigmoidal isotherm. 

The solution of the ideal model of chromatography has been intensively 
discussed in the past, notably by Glueckaufz”26, Amundson and co-workers27*28 and 
Guiochon and co-workers2g930. Recently, an analytical solution has been formulated 
for the single-component problem in the case of a Langmuir isotherm3i and in the 
general case of any isotherm 32 An analytical solution has also been demonstrated for . 
a two-component mixture, when the equilibrium isotherms of the two components are 
given by the classical competitive Langmuir mode133v34. These solutions will be 
discussed and compared with the approximate analytical solutions and with the 
numerical solutions of the semi-ideal mode13*35. 

ANALYTICAL SOLUTIONS OF THE IDEAL AND SEMI-IDEAL MODEL FOR A SINGLE 

COMPOUND 

Four main solutions are available for the prediction of the elution profile of 
a pure compound on an overloaded chromatographic column. These equations are the 
analytical solution of the ideal mode132, two approximate solutions of the semi-ideal 
model, suggested by Houghton36 and Haarhoff and Van der Linde2’, and the 
numerical solution of the semi-ideal mode13. In contrast to the ideal model solution, 
which neglects the kinetic effect on the band profile, the two approximate analytical 
solutions of the semi-ideal model consider the kinetic effect as important, and the 
non-linear or thermodynamic effect as a perturbation for which they account. The 
numerical solution of the semi-ideal model takes both thermodynamic and kinetic 
effects into full account. 

Analytical solution of the ideal model 
In a previous study32, we derived general equations which predict the elution 

band profile of a large size sample of a compound for which the isotherm has no 
inflection point in the concentration range sampled by the band. In the case of a convex 
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upward isotherm, the profile of the rear, diffuse part of the band is given by the 
following equation: 

(15) 

where F is the phase ratio. If the isotherm is convex downward, the same equation 
applies, but it gives the profile of the diffuse front. The profile ends (for a convex 
upward isotherm) at time 

t = t, + t&t, (16) 

The retention time of the band front can be calculated by observing that, as the sample 
mass is constant, the area under the profile given by eqn. 15, between the retention time 
of the front, tR, and the end of the protile, is equal to the sample size in 
chromatographic units, i.e., to the product of the concentration, Co of the pulse 
injected and its width, t,, or to the ratio of the sample size (n in moles) to the volume 
flow-rate, F,. Hence, the front retention time is given by the equation 

Alternatively, the following equations give the maximum concentration: 

Cot, n =-=- 
c CM,, 
= 

Fto Ftof’v 

(17) 

(18) 

the combination of eqns. 15 and 18 give the retention time, CR. 
Eqns. 17 and 18 can be solved in closed form for a number of classical isotherms, 

such as the parabolic isotherm (see below), the Langmuir isotherm3i, the Freundlich 
isotherm or a two-term Langmuir isotherm 32 Although it is probable that eqn. 18 can . 
be solved for a number of other simple functional dependences, it cannot be so in the 
general case. Numerical solutions of eqn. 18 are easy to calculate, however. 

The Langmuir isotherm is the most frequently used in liquid chromatography. It 
is given by 

aC 

q=1+bC 

In this case, eqn. 15 gives the rear profile3r: 

(19) 

c=;[ff=-_- I] (20) 
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and eqn. 17 gives the retention time3’: 

tR = t, + to + (tR,O - 6,) (1 - &)” (21) 

The Houghton36 and the Haarhoff-Van der Linde2’ solutions are derived for 
the parabolic isotherm obtained by a two-term expansion of the Langmuir isotherm 
(eqn. 19): 

q = aC(1 - bc) 

We give here, for the sake of comparison, the solutions of eqns. 
corresponding to this isotherm. The retention time of the band front is 

tR = tR,O + t, - 2(tR,,, - t,),,L,1 

(22) 

15 and 17 

(23) 

and the equation for the continuous, diffuse profile which is eluted after the front 
shock is 

c = _l_. tR,O + h - t 
2b (fR,O - to> 

(24) 

Combining eqns. 23 and 24 gives the maximum concentration of the band, CMax: 

C mx = &i/l4 (25) 

In these equations, t, is the band width of the injection rectangular pulse, to is the 
hold-up time, t&O is the retention time of the compound at infinite dilution, i.e., to(l + 
/co), and Lf is the loading factor, which is defined for a Langmuir isotherm as equal to 
the ratio of the amount injected to the monolayer capacity: 

where n is the sample size in moles, S the column cross-sectional area and L the column 
length. The same definition applies to the parabolic isotherm which is used here as an 
approximation of the Langmuir isotherm and is not expected to be valid at high 
concentrations. 

We note in passing that this profile is identical with the asymptotic solution of 
the ideal model for the Langmuir isotherm, which has been reported previously32. This 
result is expected as the asymptotic solution depends only on the origin slope and 
curvature of the isotherm. 

Houghton solution 
Originally, Houghton derived this solution on the assumption that the mass 

transfer kinetics are infinitely fast, but that the axial dispersion cannot be neglected36. 
However, in view of our previous discussion, the demonstration remains valid for mass 
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transfer kinetics which proceed at a finite but fast rate. The mass balance equation for 
the compound studied can be written as 

For the second-degree polynomial isotherm (eqn. 22), eqn. 27 becomes 

X AUC ac D, ac2 
at + (1 + ko)(i + ncjr = (1 + ko)(i + nc)’ at2 

with 

A=-2* 
0 

(27) 

cw 

W-4 

and 

< = LtR,O - t 

tR.0 
P-W 

. Eqn. 28 cannot be solved in closed form and a further simplification is necessary. 
Houghton proposed that the term AC in the denominators of the second term of the 
left- and right-hand sides of eqn. 28 be neglected, which gives 

C+ hc ac D, ac2 

at (I+kb).Z=(I+kb)‘F (28~) 

It is important to note that, when this simplification is made, eqn. 28~ is no longer 
a mass balance equation, i.e., it no longer conserves mass. Using the Cole-Hopf 
transform, a solution of eqn. 28~ can be derived. This solution, referred to later in this 
text as the Houghton equation, gives the elution profile of a pulse of finite width at the 
end of an infinitely long column36. Jaulmes and co-workers37,38 simplified the 
Houghton equation for an impulse input (infinitely narrow pulse). 

The Houghton solution for an infinitely narrow injection pulse can be written in 
dimensionless coordinates as follows, by using the values of A and 5 (eqns. 28a and 
28b, respectively): 

x = _ exp(-T2/2) 
J2x[coth m + erf(z/,/2)] 

where m is the dimensionless sample size, originally36*37 given by 

U2AA 

m = 2D,S( 1 + Ko) 

(29) 

(304 
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where A is the peak area, and which it is convenient to rewrite as 

Lu kb 2 

m=20, I+& ( ) 
Lf 

r is the dimensionless time, given by 

KoL fR.0 - t 

' = (1 + kO)&f tR,O - tO 

(3Ob) 

(31) 

and X is the dimensionless concentration, originally37 given by 

(32a) 

but which it is more convenient to write as 

kb x= IblC- J u2t 

1 + ko 2D,(l + Ko) 

Finally, Houghton also gave the solution of the ideal model, obtained as the limit of 
eqn. 29 when the apparent diffusion coefficient tends towards zero. The equation of 
the continuous rear part of the profile is 

c=$$yJ+“,‘) (33) 

This equation is different from the rigorous solution of the ideal model in the case of 
a parabolic isotherm, given in eqn. 24, and this shows that the Houghton equation 
cannot be correct (see below). 

Haarhoff and Van der Linde solution 
Haarhoff and Van der Linde derived equations for the band profiles of both 

a finite size sample pulse and an impulse (injection pulse with infinitely narrow width). 
They used the same assumptions as Houghton but they added one more. They decided 
to calculate the effect of dispersion on the band at t = t&O, arguing that the solute 
concentration at column outlet is significantly different from zero only during a period 
of time which is of the same order of magnitude as the standard deviation of the 
Gaussian peak observed for an infinitely small sample size and that the column length 
is assumed to be infinite (in practice, much longer than the HETP). Because of this new 
assumption, the two solutions are significantly different. 

The elution band profile is given by the same eqn. 29, but as the apparent 
dispersion coefficient, D, is equal to Hu/2, we can replace Lu/2D, in eqn. 30b by N, so 
that the dimensionless sample size becomes 

m= 4 > kb 2L 
l+& f (34) 
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Similarly, in eqn. 3 1 we now have D,t = DatR,O = Hut,,,/2, so this equation becomes 

- to 
t= JN-. 

t - tR.0 

1 + k0 t&O - to 

Finally, eqn. 32b can be written as 

x= ,blC& oJz 

(35) 

The Haarhoff-Van der Linde equation is the combination of eqns. 29 and 34-36. 
The limit of this equation, when the column efficiency becomes infinite, is now 
identical with the rigorous eqn. 24. We also note for further reference that if we 
differentiate eqn. 29, to obtain the coordinates of the band maximum, we obtain the 
following result: 

x Id -- 
Max - 2 (374 

Combination of eqns. 29,35 and 37 permits the calculation of the exact retention time. 
Unfortunately, this cannot be solved in close form. However, combination of eqns. 
35%37a gives a useful relationship: 

k’ = kb(l - 26CM,,) (37b) 

Comparison between the different solutions of the ideal and semi-ideal model 
We have four different solutions available for predicting the elution profile of 

a compound at high concentration: the numerical solution3*3s, which can serve as 
a reference to compare with the solutions of the other three approaches, the Houghton 
and the Haarhoff-Van der Linde equations and the solution of the ideal model. We 
discuss first the advantages and drawback of the Houghton and Haarhoff-Van der 
Linde equations and compare them together. We then present a similar discussion for 
the analytical solution of the ideal model and compare it with the previous two 
solutions. Finally, we discuss the advantages and inconveniences of the numerical 
solution. 

Haarhoff- Van der Linde andHoughton equations: injluence of thefirst approxima- 
tion, C is small. These two equations20*36 are very similar and both make the same two 
basic assumptions in order to arrive at a closed form equation for the elution band 
profile: the sample size is small enough and the term /iC can be neglected compared to 
unity, and the equilibrium isotherm can be replaced with its first two-term expansion. 
We discuss first the range of validity of these assumptions and their consequences. 

As mentioned earlier, it is assumed in the derivation of both equations that the 
sample size is small and the term AC can be neglected compared with unity in the 
denominator of two terms of eqn. 28. Houghton3‘j suggested that, in order to satisfy 
this assumption, the sample size should be such that the product InC,,,l should not 
exceed 0.05. This condition is equivalent to IbCM,,ko/(l + PO)] < 0.025. This 
threshold usually corresponds to loading factors of ca. 0.001 or 0.1 %, The equation 
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obtained by simplifying eqn. 28 and dropping the two (1 + AC’) terms is no longer 
mass conservative and is inaccurate at the first order [a correct first-order approxima- 
tion would replace the terms l/(1 + AC) by (1 - AC), not by 11. 

The fact that the Houghton equation is not mass conservative can cause a larger 
error. In the case of an upwardly convex isotherm, n is negative and the Houghton 
equation will predict an increasingly large mass loss when the sample size increases, as 
has been reported previously 3g Conversely, for an upwardly concave isotherm, the . 
Houghton equation leads to a mass gain which increases with increasing sample size. 
As the equation is incorrect at the first order, the mass loss or gain is proportional to 
the sample size at low values. 

The Haarhoff-Van der Linde equation, which makes the same assumption, 
should suffer the same problem, but it does not because of the compensation which is 
introduced by calculating the axial dispersion at t = t&O. There is no mass loss or gain 
with this equation. 

An exact equation for the band profile of a compound experiencing a parabolic 
isotherm has to be a rigorous solution of eqn. 28. There does not seem to be such 
a solution in closed form. An approximation has to be made, as was done by both 
Houghton and Haarhoff and Van der Linde. We suggest here another such 
approximation, which has the advantage of being more accurate than the Houghton 
equation and of not making the additional assumption made by Haarhoff and Van der 
Linde for the calculation of axial dispersion, although it results in a band profile 
equation which is identical with the latter. 

Instead of dropping the term l/( 1 + AC) from eqn. 28 completely, we include it 
in the definition of n and D,. Then, we replace C in these terms by the value derived 
from eqn. 24, i.e., by the concentration obtained for an infinitely efficient column, 
which is 1 + AC = t/t&@ This calculation gives an equation similar to the Houghton 
equation (eqn. 29). However, in eqns. 30a and 32a, D, and n must be replaced, D, by 
D,/(l + AC), equal to DatR,O/t, and n by /i/(1 + AC), equal to h&t. Substituting 
these new parameters in the Houghton equation (eqns. 29-32) gives exactly the 
Haarhoff-Van der Linde equation (eqns. 29 and 34-36) and constitutes a simpler and 
more natural procedure for deriving it. This demonstration has the further advantage 
of explaining why the Haarhoff-Van der Linde equation conserves mass. 

Our derivation gives an approximate solution of eqn. 28 which is much closer to 
the exact solution of eqn. 28 than the solution of eqn. 28c, which was derived by 
Houghton. Because of the (1 + AC)-’ terms, eqn. 28 cannot be solved in closed form. 
Replacing these terms by a close approximation (derived from the solution of the ideal 
model) provides a much better approximate solution than dropping the terms entirely 
and, especially, eliminates the mass loss encountered with the Houghton equation. 

In conclusion, although it is not a rigorous solution, the Haarhoff-Van der 
Linde equation is a much better approximation of the band profile than the Houghton 
equation. It is more accurate, it conserves mass and it can be used for any sample size, 
as long as the equilibrium isotherm is correctly approximated by a parabolic equation. 
Fig. 1 shows a comparison between the profiles predicted by the two equations, for 
sample sizes corresponding to loading factors of 0.01-0.2%, with a column efficiency 
of 12 500 theoretical plates. At very low column loadings, the two equations agree 
exactly. Significant differences appear for a loading factor of 0.1% and they increase 
rapidly with increasing sample size. Also, an increasing relative mass loss is observed, 
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Fig. 1. Comparison between the band profiles predicted by the Houghton and Haarhoff-Van der Linde 
equations. Parabolic isotherm (eqn. 22) with a = 20, b = 5. Column length, 25 cm; phase ratio, 0.25; dead 
time, f0 = 200 s; column efficiency, 12 500 theoretical plates. Loading factors: (1) 0.01%; (2) 0.05%; (3) 
0.10%; (4) 0.20%. The Haarhoff-Van der Linde profiles are identified by squares. The masses lost by the 
Houghton profiles are (1) 0.2%, (2) 0.9%, (3) 1.5% and (4) 2.5%. 

which is already 2.5% for a loading factor of 0.2%. Fig. 2 compares the band profiles 
obtained with the two equations, using a convex and a concave isotherm, with an equal 
absolute value for the second degree coefftcient, b (see eqn. 22), and the same loading 
factor of 1% in both instances. The sign of the deviation between the two equations is 
reversed, and also the sign of the mass loss: with the upward convex isotherm the mass 
loss is 5.3% and with the downward convex isotherm the mass gain is 4.5%. It is 
obvious, however, that the difference has become larger than the experimental errors 
and one equation, the Houghton equation, has become unsuitable to account for band 
profiles. 

Haarhoff- Van der Linde and Houghton equations: influence of the second approx- 
imation, a parabolic isotherm. The second major assumption made by Houghton36 
and by Haarhoff and Van der Linde” is that the isotherm is parabolic. We know 
that this has to be a simplification, but it is always possible to replace any isotherm by 
its first two-term expansion, at least in a certain concentration range. We have shown, 
however, that the band profile is extremely sensitive to small fluctuations of the 
isotherm3. This is why, in order to assess the value of our theoretical work on the 
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Fig. 2. Comparison between the band profiles predicted by the Houghton and Haarhoff-Van der Linde 
equations. Parabolic isotherms. Conditions as in Fig. 1, except loading factor, 1% in all instances. (1) 
Convex upward isotherm (eqn. 22, b = 5); (2) concave upward isotherm (eqn. 22, b = - 5). The Houghton 
profiles are identified by squares. The masses lost by the Houghton profiles are (I) 5.3% and (2) -4.5%. 

prediction of the band profiles of overloaded columns, we had to carry out accurate 
determinations of the equilibrium isotherms, and these measurements must be done on 
the very column on which the overloaded bands whose profiles are studied are 
eluted40v41. Hence, we may expect the replacement of the isotherm by its first two-term 
expansion to have some effect on the band profile even at low concentrations. 

Haarhoff and Van der Linde” have discussed this problem. They concluded 
that for most isotherms used in practice, their equation should give accurate band 
profiles, as long as the following conditions is satisfied: 

or 

Lf < 0.002 
l+/& 2 

( ) 
- 

kb 
VW 
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In eqn. 38a, W,, is the baseline band width of the band profile predicted by the ideal 
model for a parabolic isotherm (see eqn. 23). 

Thus, after Haarhoff and Van der Linde, their equation should give satisfactory 
results with any isotherm, provided that the loading factor is less than about 0.2% or, 
from eqn. 25, bCM,, , < 0.05. Increasing further the loading factor results in less and less 
accurate band profiles, not because of the approximation made in the derivation of the 
analytical solution (see above) but because of the progressive deviation between the 
quadratic isotherm equation (eqn. 22) and the true isotherm. 

A practical procedure for checking the degree of agreement between the band 
profiles predicted by the Haarhoff-Van der Linde equation and the true profile starts 
by choosing a Langmuir isotherm. The elution band profiles are calculated for samples 
of increasingly large size, using the numerical solution of eqn. 12. These profiles are 
compared with the solutions of the Haarhoff-Van der Linde equation derived using 
the first two-term expansion of the same Langmuir isotherm. For a Langmuir 
isotherm, the true thermodynamic band width is given by the equation3’ 

wth = <2&i - Lf)@R,O - to) (39) 

whereas with a parabolic isotherm it is 

w,h = &/%R,O - 10) (40) 

The first band width is the product of multiplying the latter by 1 - ,/z/2, a factor 
which becomes really significant when the loading factor exceeds 1%. The difference 
between the two values of the thermodynamic band width calculated with eqns. 39 and 
40, for values of the loading factor of 1 and lo%, are 5% and 18%, respectively. 
Obviously, however, when the column efficiency is low, the band maximum 
concentration is smaller than predicted by the ideal model, and the concentration 
range sampled by the band during its elution is correspondingly narrower. Hence, the 
parabolic isotherm can be used to account for the elution band profiles of larger size 
samples with lower efficiency columns than with higher efficiency columns, the critical 
condition being that bCMax is less than 0.05. 

Haarhoff- Van der Lindeand Houghton equations: conclusion. The last assumption 
made by Haarhoff and Van der Linde is that the band profile becomes Gaussian 
when the sample size becomes infinitely small, i.e., under the conditions of linear 
chromatography. Therefore, the model cannot be used when the mass transfer kinetics 
are slow and the column efficiency for small size samples is lower than about 500 
theoretical plates. 

In conclusion, the Haarhoff-Van der Linde equation provides an excellent 
representation of the elution band profiles at low column loadings, and with most 
HPLC columns it should be used as a convenient model for values of the loading factor 
not exceeding 0.2% for ideal columns (bC Max < 0.05 for real columns). This equation 
can be used with loading factors of up to 1% for ideal columns (bCMax < 0.1 for real 
columns), which gives an error in the band width not exceeding 5%, except, however, 
for the low-efficiency columns which have to be used in affinity chromatography or 
with some other highly specific retention mechanisms. On the other hand, we have 
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between the band profiles predicted by the ideal model and by the Haarhoff-Van der 
Linde equation, using in both instances a parabolic isotherm (note that the loading 
factor is calculated for the Langmuir isotherm having the same origin slope and 
curvature as the parabolic isotherm selected), for a column having 2500 theoretical 
plates. As expected, as the effective loading factor, m, is small (between 0.18 and 3.5) 
the agreement between the two models is poor, the Haarhoff-Van der Linde equation 
giving in this instance an excellent description of the true elution band profiles. 
Obviously, the ideal model cannot and should not be used in such instances. 

Fig. 4, in contrast, shows a series of band profiles obtained with high column 
efficiencies and the same values of the loading factor as in Fig. 3. This time, the 
effective loading factor is m = 35 in all instances. The agreement between the two 
models is now excellent. It can only improve if the value of m exceeds 35. In Fig. 4, the 
retention time predicted by the ideal model is shorter by only 0.5% than the retention 
time predicted by the Haarhoff-Van der Linde equation, the band is 9% taller and it 
does not tail. 

In order to assess better what in the systematic error made with the Haarhoff- 
Van der Linde equation comes from considering a parabolic isotherm and what is due 

m la00 1 

Time (o) 
Fig. 4. Comparison between the band profiles predicted by the ideal model and the Haarhoff-Van der 
Linde equations. Parabolic isotherms, as for Fig. 1. Conditions as in Fig. 3, except column efficiency. 
Reduced sample size, m = 35. Loading factors and efficiency: (1) & = O.Ol%, N = 500 000; (2) & = 
0.02%, N = 100 000; (3) Lr = O.l%, N = 50 000; (4) Lr = 0.2%, N = 25 000. The Haarhoff-Van der 
Linde profiles are identified by squares. 
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Fig. 5. Comparison between the band profiles predicted by the ideal model and the Haarhoff-Van der 
Linde equations. Parabolic isotherms, as for Fig. 1. Conditions as in Fig. 3, except loading factor, 2% (m = 
35). The Haarhoff-Van der Linde profile is identified by squares. 

to the assumptions made in the mathematical derivation, when considering the solute 
concentration C to be small, we have carried out some calculations in order to compare 
the band profiles predicted by the ideal model, with either a parabolic or a Langmuir 
isotherm, and by the Haarhoff-Van der Linde equation, using the same parabolic 
isotherm. The results are shown in Figs. 5 and 6. 

Fig. 5 shows a comparison between the profile predicted by the two models for 
a parabolic isotherm, a column efficiency of 2500 theoretical plates (as for Fig. 3) and 
a loading factor Lf = 2%. The agreement between the two profiles, which now 
correspond to a reduced sample size m = 35, is very good. 

Fig. 6 shows a comparison between the profile predicted by the ideal model for 
a Langmuir isotherm and the profile predicted by the Haarhoff-Van der Linde 
equation for the corresponding isotherm. All experimental conditions are the same as 
in Fig. 5. The Haarhoff-Van der Linde profile is, of course, the same for both Figs. 
5 and 6. The agreement between the two profiles is much less satisfactory than in Fig. 5. 
The retention time of the ideal model profile is the same as that of the Haarhoff-Van 
der Linde profile, but the latter profile begins to elute much earlier, its height is much 
lower and the rear part of the two profiles intersect, instead of being tangential along 
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Fig. 6. Comparison between the band profiles predicted by the ideal model and the Haarhoff-Van der 
Linde equations. Parabolic isotherm as in Fig. 1 for the Haarhoff-Van der Linde equation, corresponding 
Langmuir isotherm for the ideal model. Conditions as in Fig. 5. The Haarhoff-Van der Linde profile is 
identified by squares. 

a long arc. The comparison between Figs. 5 and 6 shows that the maximum sample size 
at which the Haarhoff-Van der Linde equation can be used depends very much on the 
extent of the deviation between the actual isotherm and its two-term expansion. The 
assumption of a parabolic isotherm is the major limit to the validity of the 
Haarhoff-Van der Linde equation at large sample sizes. 

Ideal model and the Houghton equation. Although we have shown above that the 
Houghton equation is not as good an approximate solution as the Haarhoff-Van der 
Linde equation, we carried out for it a similar comparison to that in the previous 
section between the results of the ideal model and those of the Haarhoff-Van der Linde 
equation. 

Fig. 7 compares the elution band profiles obtained with the ideal model and with 
the Houghton equation for a compound with a parabolic isotherm and a 1% loading 
factor in both instances, and with a column efficiency of 5000 theoretical plates for the 
Houghton equation. There is a poor agreement between the two profiles. The mass loss 
experienced is 6.75%. This confirms our earlier conclusion that the Houghton 
equation cannot be used to account for elution band profiles at high loading factors. 
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Fig. 7. Comparison between the band profiles predicted by the ideal model and the Houghton equations. 
Parabolic isotherms, as for Fig. 1. Conditions as in Fig. 1, except loading factor, Lf = I%, and column 
efficiency, 5000 plates (m = 35). The Houghton profile is identified by squares. The mass loss is 6.75%. 

not only because of the parabolic isotherm assumption, but also because of the 
approximation made in the derivation of this equation and the resulting mass loss or 
gain. The comparison between Figs. 5 and 7 illustrates this problem. 

Fig. 8 shows a comparison between the band profile predicted by the ideal model 
for a Langmuir isotherm and by the Houghton equation for the two-term expansion of 
this Langmuir isotherm. The agreement is now almost satisfactory, not because of the 
validity of the Houghton equation, but because of some error compensation. The loss 
of the ,4C term partially compensates for the change in the isotherm. It is certain, 
however, that a least-squares adjustment of the Houghton equation on experimental 
data will, in most instances, lead to values of the experimental parameters which have 
little or no physical meaning. 

Haarhoff-Van der Linde equation and the dimensionless band profile plot. We 
have shown previously31 that the band profiles obtained for increasing sample sizes of 
a given compound under constant experimental conditions can be scaled to 
a dimensionless form. This result was derived from theoretical considerations 
regarding the band profile obtained with the ideal model, assuming a Langmuir 
equilibrium isotherm. 
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Fig. 8. Comparison between the band profiles predicted by the ideal model and the Houghton equations. 
Parabolic isotherm for the Houghton equation. Langmuir isotherm for the ideal model. Conditions as in 
Fig. 7. The Houghton profile is identified by squares. 

With the ideal model, it is easy to show that a normalized dimensionless plot can 
be obtained by using (t - ~,)/(f~,~ - to) as a reduced ti_me coordinate and bC as 
a reduced concentration coordinate 31 The profiles predicted by the Langmuir . 
isotherm depend only on the loading factor, Lf, the ratio of the sample size to the 
column saturation capacity. This system of reduced parameters will be called the 
“ideal reduced coordinate system”. We have shown that the degree of agreement 
between reduced plots of data obtained with real columns in the “ideal reduced 
coordinate system” is good only if the different columns have the same effkiency3’. 

Similarly, eqns. 34-36 show that, for a real column with a finite efficiency and if 
the equilibrium isotherm is parabolic, a dimensionless plot can be obtained by using 

r = $%I(1 + kb) Kr - rR,O)l(fR,O - to)] (see eqn. 35) as reduced time and X = 

IblCKJ(l + kb)l,/~( see eqn. 36) as reduced concentration. The reduced sample size, 
which is the only parameter on which the normalized profiles depend, is m = 
N[kb/(l + ko)]*Lf (eqn. 34). This system of reduced parameters will be called the 
“Haarhoff-Van der Linde reduced coordinate system”. We note that the reduced 
parameters depend on the column efficiency, N. We had already shown that the degree 
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of agreement between the solution of the ideal model and the numerical solution for 
a real column depends on the column efficiency and on the loading facto?‘. 
A correction can be derived which combines, through the variance additivity ru1e20*42, 
the thermodynamic band width predicted exactly by the ideal model solution and the 
kinetic band width obtained from the efficiency of the band at infinite dilution31,43. 

This discussion provides a theoretical explanation to results which, previously, 
were merely qualitative. Eqn. 34, for example, explains why, and to what extent, an 
efficient column appears to be more overloaded by a given sample size than a less 
efficient column. 

These results have such an important practical value that it is worthwhile 
investigating in detail now what their range of validity is. We note that Poppe and 
Kraak44 and Eble et a1.45 have presented experimental results in a format that is 
compatible with the reduced plot just outlined (see next section). 

Fig. 9 shows, in the Haarhoff-Van der Linde reduced coordinate system, a series 
of seven normalized band profiles corresponding to as many sets of different 

Fig. 9. Plot of seven superimposed band profiles predicted by the Haarhoff-Van der Linde equation, in the 
Haarhoff-Van der Linde reduced coordinate system (see text). Plot of reduced concentration (X, eqn. 36) 
wsus reduced time (7, eqn. 35). (I) N = 10 000, kb = 1, b = 2, F, = 1 ml/mitt; (2) same as(l), except N = 
5000; (3) same as’(l), except N = 1000 plates; (4) same as (2), except b = 5; (5) same as (2), except F, = 
5 ml/min;(6) same as (2), except kb = 5; (7) same as (2), except & = 25. The loading factor is adjusted so 
that all conditions correspond to the same value of m = 5. 
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experimental conditions, all of them giving the same value of the normalized loading 
factor, i.e., the reduced sample size, m. The curves cannot be distinguished. Fig. 10 
shows a series of normalized band profiles corresponding to increasing values of the 
reduced loading factor, from 1 to 30. The result is very similar to that reported earlier, 
and corresponding to Langmuir isotherms . 31 It demonstrates the principle and the 
practical value of the band profile reduced plot. 

Figs. 11 and 12 present the converse case. They exhibit band profiles calculated 
with a Langmuir isotherm and plotted in the Haarhoff-Van der Linde reduced 
coordinate system. The four profiles presented in each figure correspond to various 
experimental conditions giving the same value of the reduced sample size, m, of 3.5 for 
Fig. 11 and 35 for Fig. 12. We have shown in Fig. 9 that when the isotherm is parabolic 
all band profiles corresponding to the same value of the reduced sample size give the 
same plot in the Haarhoff-Van der Linde reduced coordinate system. Fig. 11 shows 
that for a reduced sample size of 3.5 the parabolic isotherm is already a poor 
representation of the Langmuir isotherm. The deviation is especially large for the 
profile corresponding to the less efficient column, but it should be emphasized that this 
profile corresponds also to the largest sample size (see eqn. 34). The scatter of the 
different plots and their deviations from the normalized Haarhoff-Van der Linde 
profile (see Fig. 10) increases as expected when m is increased from 3.5 (Fig. 11) to 35 

a 
X 

2 

Fig. 10. Plot of band profiles predicted by the Haarhoff-Van der Linde equation, using the Haarhoff-Van 
der Linde reduced coordinate system (see text). Plot of reduced concentration (X, eqn. 36) versus reduced 
time (T, eqn. 35). Influence of sample size. Reduced sample size, m: (1) 1; (2) 5; (3) 10; (4) 30. 
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Fig. 11. Comparison between band profiles predicted by the numerical solution of the semi-ideal model, 
using the Langmuir isotherm, and plotted in the Haarhoff-Van der Linde reduced coordinate system (see 
text). Plot of reduced concentration (X, eqn. 36) versus reduced time (t. eqn. 35). (1) N = 1000, k0 = 1, b = 
2, F, = 1 ml/min; (2) same as (1) except N = 5000; (3) same as (l), except N = 10 000; (4) same as (2), 
except & = 5. The loading factors are chosen so that the reduced sample size m = 3.5. 

(Fig. 12). These figures show that, if the isotherm is not parabolic but is Langmuirian, 
the Haarhoff-Van der Linde normalized plot is not applicable, and we must use the 
ideal reduced coordinate system, at fixed column effrciency31. 

Fig. 13 shows a plot of two band profiles in the ideal reduced coordinate system. 
These bands are both solutions of the ideal model, one using a parabolic isotherm and 
the other a Langmuir isotherm. The two profiles are tangential at the point (t = lR,O, 
C = 0). The band profiles are nearly identical for a loading factor of 0.2% and remain 
very close for a loading factor of 1%. Above the latter value, the difference between 
them increases rapidly. This confirms that the practical maximum limit of validity of 
the Haarhoff-Van der Linde equation is for a loading factor of cu. 1% for ideal 
columns (bC,,, < 0.1 for real columns). 

EMPIRICAL SOLUTIONS 

Poppe and Kraak 44 have shown that the apparent plate number of a 
chromatographic band, Nap,,, is related to the sample size injected by the following 
equation: 
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Fig. 12. Same as Fig. 11, except the loading factors are adjusted so that rn = 35. 

where N is the limit efficiency for a sample of infinitely small size and m has the same 
definition as in eqn. 34 above. A similar relationship was also given by Knox and 
Pyper4*. This result has been used recently by Eble et a1.45*46. Eqn. 41 derives directly 
from the Haarhoff-Van der Linde equation and from the fact that the profiles can be 
scaled (see above, Figs. 9 and 10). In fact, Fig. 4 in ref. 20 shows the same plot of the 
variation of the column apparent efficiency with m as Fig. 9 in ref. 44 and Fig. 5 in ref. 
45. 

Similarly, Eble et a1.45 have suggested that the apparent column capacity factor 
depends on the sample size through the equation 

(42) 

where g( ) is a functional dependence. Fig. 4 in ref. 20 shows a plot of the variation of 
the apparent retention with m which is equivalent to Fig. 8 in ref. 44 and Fig. 6 in ref. 
45. On the other hand, it results from eqn. 37 that the functional dependence of the 
retention time (i.e., k’) is 
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Fig. 13. Comparison between two band profiles calculated with the ideal model, using two different 
equilibrium isotherms. The plots are made in the ideal reduced coordinate syitem (see text). (1) Parabolic 
isotherm; (2) Langmuir isotherm. 

ux =.fW 

or 

VW 

(43b) 

Eqn. 42 is not equivalent to eqn. 43b and is an incorrect oversimplification. 
Eqns. 41 and 43 are valid only as far as the Haarhoff-Van der Linde equation is 

valid, that is, as we have shown above, as long as the loading factor does not exceed cu. 
1%. Accordingly, the experimental results obtained by Eble et al. (Figs. 6-24 in ref. 46) 
are a convincing verification of the Haarhoff-Van der Linde equation. As explained in 
the previous discussions, the deviations from a universal plot which are observed at 
large sample sizes are explained by the incorrect assumption made by Haarhoff and 
Van der Linde of a parabolic isotherm. 

Semi-empirical relationships such are those derived subsequently by Eble et a1.45 
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used empirical parameters to force adjustment of experimental data on the universal 
plot. As the basic origin of the deviation observed, i.e., the implicit assumption of 
a parabolic isotherm, was not understood, the approach has had only limited success. 

As we have shown above, when the sample sizes used in preparative liquid 
chromatography correspond to values of the loading factor not exceeding 1% for ideal 
columns (b&, _ < 0.1 for real columns), the Haarhoff-Van der Linde equation and 
the corresponding dimensionless plot give successful predictions of the entire band 
profiles and of their sample size dependence. Then plots of N or k’ versus complex 
functions of experimental parameters are of dubious practical interest as they give 
much less information. At higher values of the loading factors the only correct 
predictions can be obtained either with the solution of the ideal model, with 
a correction for finite efficiency31*43 or through the calculation of numerical solutions. 

CORRECTION OF THE ANALYTICAL SOLUTION OF THE IDEAL MODEL 

There is no exact solution available for eqn. 12 at high concentration. The 
influence of a finite column efficiency on the band profile cannot be accounted for 
properly. In other words, we are in a situation comparable to that at low concentra- 
tions, where the Haarhoff-Van der Linde equation assumes a simplified isotherm to 
account for the onset of the influence of the non-linear thermodynamic behavior on 
a band profile which is still essentially controlled by the kinetics of mass transfer. We 
would like to account for the influence of the finite column efficiency on a band profile 
which is essentially controlled by the non-linear behavior of the isotherm, for which the 
ideal model accounts perfectly. 

Although there is no rigorous solution to this problem, it can be handled 
approximately, by using a result classical in linear chromatography and extending it to 
non-linear chromatography. The original idea was presented by Haarhoff and Van der 
Linde” and by Knox and Pyper4’ and a more rigorous treatment was derived later31. 
We assume that the observed column height equivalent to a theoretical plate (HETP), 
H app = L/Nap,, is the sum of two independent contributions: 

f&p = H + Hth 

where Hand Hth represent the kinetic and thermodynamic contributions to the HETP, 
respectively. There is no real theoretical basis to this assumption, which stems from the 
additivity of the independent contributions to the band variance in linear chromato- 
graphy4’. 

The first contribution, H, is equal to the HETP determined under linear 
conditions, assuming that the diffusion coefficients are independent of the solute 
concentration, which is valid in the concentration range used in preparative 
chromatography, for compounds of low or moderate molecular weight, and that the 
retention kinetics are fast. It accounts for the effect of the finite rate of mass transfer on 
the band width. The second contribution, Hth, results from the non-linear behavior of 
the isotherm and can be derived from our previous results on the ideal model, which 
account correctly for this effect, but for this effect only. 
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Eqn. 44 is equivalent to 

where NLPP, N and Nfh are the apparent plate number for a certain value of the loading 
factor, t e plate number at infinite dilution for the same compound and the plate 
number r: esulting from the width of the profile as predicted by the ideal model, 
respectively. 

This procedure has been used in the case of a Langmuir equation to calculate the 
band wi th and the apparent column efficiency 

H 

31 It was found to give results in good . 
agreeme t with those of the numerical calculations and with the experimental data 
previous y acquired43. 

CONCL SION 
Y 

As we have mentioned in the previous section, the work by Eble et ~1.~~ provides 
a detailed verification of the validity of the Haarhoff-Van der Linde equation at low 
values of the column loading factor. An excellent agreement between the band profiles 
predicted by the ideal model and the profiles recorded for large samples of pure 
compounds has been reported under a variety of experimental conditions43*4s. The 
only common characteristic of these experiments was that in most cases the reduced 
sample size, m, was larger than 35. A correction procedure which accounts for the band 
broadening due to finite column efficiency kinetics has been described3 1*42. The results 
were very satisfactory4j. 

These experimental results confirm our conclusion that the use of the Houghton 
equation should be avoided, that the Haarhoff-Van der Linde equation gives excellent 
results for the prediction of band profiles at low loading factors (Lr < 0.2% for ideal 
columns or bC Max < 0.05 for real columns), which become progressively less good with 
increasing loading factors. It should not be used with loading factors much in excess of 
ca. 1% for ideal columns (bCMax , < 0.1 for real columns). The ideal model give 
excellent results at high loading factors with values of m exceeding ca. 35, which, 
depending on the column efficiency and the retention, corresponds to values of the 
loading factor between 0.5% (very efficient columns, e.g., N = 10 000 plates and P0 = 
3) and 3.3% (e.g., N = 1500 plates and Kc = 3). In either instance, the use of the 
corresponding reduced coordinate system permits easy comparisons and predictions 
of the band profiles and of the effects of changes in the experimental conditions on 
these profiles and their sample size dependence. 

If both analytical solutions fail, numerical solutions can be used, as discussed in 
the next section. 

NUMERICAL SOLUTIONS OF THE SEMI-IDEAL MODEL FOR A SINGLE COMPOUND AND 

ANY ISOTHERM 

We have shown above that the analytical solution derived by Haarhoff and Van 
der Linde” is valid for values of the loading factor such that bCuox 6 0.05. On the 
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other hand, we have also shown that the ideal model is valid when the reduced loading 
factor exceeds 35, which in most instances (i.e., with columns having several thousand 
theoretical plates and values of & in excess of 2) corresponds to loading factor of 
several percent (& = 2, N = 2500 give m = 35 for Lf = 3%). In the intermediate 
range of sample sizes, there is no satisfactory solution, although the band width of the 
profile at any fractional band height can be approximated, using the procedure 
suggested by Knox and Pyper42. 

As there is no analytical solution available, we have to resort to numerical 
calculations. Two approaches are available: the semi-ideal model, which can be used 
only when the limit efficiency of the column at infinite dilution of the sample exceeds 
cu. 500 theoretical plates, and the kinetic models, which are valid in the whole range of 
values of the rate constants. We discuss only the former approach, as this work deals 
with equilibrium and semi-equilibrium models. Kinetic models are discussed in 
a separate paper’. 

Numerical solutions 
In the semi-ideal model, the mass transfer kinetics are handled in the same way as 

by Van Deemter et al. l4 and by Haarhoff and Van der Linde”. The axial dispersion 
coefficient, D, in the mass balance equation is replaced by an apparent dispersion 
coefficient, D, = Hu/2, which combines all the effects which, in linear chromato- 
graphy, are traditionally lumped in the column HETP. The system of the mass balance 
equation (eqn. 1) and the kinetic equation (eqn. 4) is therefore replaced by eqn. 12. This 
equation is an excellent approximation of the system of partial differential equations in 
chromatography whenever the mass transfer kinetics are fast enough and at very low 
sample sizes the band profile tends towards a Gaussian profile. 

The great advantage of this approach is that we do not need any detailed 
information regarding the mass transfer kinetics and their dependence on the solute 
concentration. Such information is usually difficult to collect and requires long, 
complicated experiments which provide only indirect determinations. With the 
semi-equilibrium model, we need to know the column efficiency at infinite dilution, the 
sample size and the equilibrium isotherm between the two phases, which is also needed 
with the kinetic models. The numerical solutions can accommodate any isotherm of 
physical significance and require no simplification. 

Numerical solutions, however, do create truncation errors, because of the 
necessary use of finite values of space and time increments in the integration. These 
errors must be minimized or controlled. The classical method of finite differences lends 
itself to a straightforward application in the present instance. Two approaches are 
available. They have been discussed in detail in several previous publications35v49*50, 
so we present here only a brief review of the numerical analysis problems. 

Characteristic procedure. In this approach3*5 ‘, we neglect the right-hand side of 
eqn. 12, i.e., we write a program as if we wanted to calculate solutions of the ideal 
model (eqn. 14). We calculate the concentration at each point of a grid (nh,&). We 
replace each differential by a finite difference, calculated for small but finite increments 
of the variables, space (h) and time (T), respectively. Various finite difference schemes 
can be used, each introducing different truncation errors. For example, we may write3 
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cj 
n-k1 

_ c-i 

h 

.,l.C~+Fq~-C~-‘-F~-l=o 

U z 

which can be solved for C{ + i: 

Cj .+I=C:+$C{+Fq&C~-l-Fg’.-l) 

VW 

The concentration at any point C(n + 1 ,I) of the grid can be calculated, knowing the 
concentrations at the points (no] and (nj- 1). 

This procedure creates an error, because the increments must remain finite. It 
can be shown that the error is equivalent to the addition of a dispersion term to the 
right-hand side of eqn. 1449.‘o. Therefore, the procedure gives solutions of eqn. 12. If 
the space increment, h, is equal to the column HETP (i.e., to H) and the time increment 
is equal to 2H(l + ko)/u, the truncation error in linear chromatography is exactly 
equal to D,@C/az’, where D, = Hu/2. Therefore, the elution band profile of a column 
having an HETP equal to H (eqn. 12) is simulated49s50. 

Lax-Wendroff procedure. In this procedure, we write a program to calculate 
directly the solutions of eqn. 12, not those of eqn. 14, as in the previous section. The 
same error calculation method (i.e., replacement in the finite difference equation of the 
value of the concentration at each point of the grid by its first three-term expansion) 
shows that it is possible to eliminate the excess diffusion which could arise from the 
truncation errors by a proper choice of the differences, i.e., by using the numerical 
scheme described by Lax and Wendroff (see ref. 35). In linear chromatography, we 
obtain the following equation: 

c.i+l _ cj 
n Cj 

“+u, n+1 
z 

,,qTyz I l~~Jx+l-2.$+cLl (46c) 

where u, = u/( 1 + /co). The extra-term, tu,2/2, added to the diffusion coefficient term, 
is introduced to compensate for the truncation error. 

This procedure, however, suffers from two major drawbacks. First, the method 
used for the cancellation of the errors, which permits a correct simulation of the 
diffusion term in the right-hand side of eqn. 12, is exact only in linear chromatography, 
where the result is the same as the result of the calculations made using eqn. 46b. In 
non-linear chromatography an error appears. At moderate values of the loading factor 
this error is a small time shift. At higher loading factors, the error is difficult to 
estimate. Second, the choice of the values of the space and time increments must be 
made in very narrow ranges, in order to avoid numerical instabilities, resulting in 
unacceptable profiles. For these reasons, we prefer the former approach. 

Comparison between the analytical solutions of the semi-ideal models and the numerical 
solutions of the semi-ideal model 

We compare here the results obtained by the numerical solution of eqn. 12 and 
the results given by the Haarhoff-Van der Linde equation. This comparison completes 



EQUILIBRIUM AND SEMI-EQUILIBRIUM MODELS 527 

that in the previous section between the profiles predicted by this equation and by the 
analytical solution of the ideal model. 

Fig. 14 compares the band profiles predicted by the Haarhoff-Van der Linde 
equation and by the numerical solution, both using a parabolic isotherm, for loading 
factors between 0.01 and 0.2% and a column efficiency of 2500 theoretical plates. In all 
four cases, the agreement between the two profiles corresponding to the same loading 
factor is excellent. Fig. 15 shows the same comparison, except that a Langmuir 
isotherm is used for the calculation of the numerical solutions, and the two-term 
expansion of this Langmuir isotherm for the calculations of the Haarhoff-Van der 
Linde equation. Although the agreement between the two profiles corresponding to 
a given loading factor is still very good, some significant difference begins to appear at 
the highest column loading. This result confirms, nevertheless, that the Haarhoff-Van 
der Linde equation is an excellent approximation of the band profile at low loading 
factors. 

Fig. 16 compares the profiles predicted by the Haarhoff-Van der Linde equation 
and the numerical solution, both for a parabolic isotherm and for a loading factor of 

llii Ilk0 rm l&o l2is l&o 1 

Time (8) 

Fig. 14. Comparison between the band profiles predicted by the Haarhoff-Van der Linde equation and 
calculated by the numerical solution of the semi-ideal model. Parabolic isotherms, as for Fig. 1. Conditions 
as in Fig. I, except column efficiency, 2500 plates. Loading factors: (1) 0.01%; (2) 0.02%; (3) 0.1%; (4) 0.2%. 
The Haarhoff-Van der Linde profiles are identified by squares. 
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Fig. 15. Comparison between the band profiles predicted by the Haarhoff-Van der Linde equation and 
calculated by the numerical solution of the semi-ideal model. Parabolic isotherm as for Fig. 1 for the 
Haarhoff-Van der Linde equation, Langmuir isotherm for the numerical solution. Conditions as in Fig. 14. 
Loading factors: (1) 0.01%; (2) 0.02%; (3) 0.1%; (4) 0.2%. The Haarhoff-Van der Linde profiles are 
identified by squares. 

0.2%, with increasing column efficiency. The agreement is excellent in all instances, 
from 500 to 25 000 plates. This agreement, and also the agreement observed between 
the experimental results and the predictions of numerical solutions at moderate and 
high loading factors40941, confirm the validity of our numerical algorithm, and 
especially the soundness of the choice of the space and time integration increments for 
the proper simulation of the column efficiency (see above). The progressive change in 
band profile when the column efficiency (i.e., the mass transfer coefficient) decreases is 
in excellent agreement also with the prediction of the kinetic modelr2. The band width, 
the thickness of the shock layer22 and the band retention time increase while the band 
height decreases with decreasing column efficiency. The semi-equilibrium models 
cannot predict the changes in the band profile which take place when the mass transfer 
coefftcient decreases further and the column efficiency becomes much lower than 500 
theoretical plates, This problem is discussed elsewhere’. 

Figs. 17 and 18 compare the profiles derived from the Haarhoff-Van der Linde 
equation and from the numerical solution, with either a parabolic or a Langmuir 
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Fig. 16. Comparison between the band profiles predicted by the Haarhoff-Van der Linde equation and 
calculated by the numerical solution of the semi-ideal model. Parabolic isotherms, as for Fig. 1. Conditions 
as in Fig. 1, except loading factor, 0.2%, and variable column efficiency: (1) 500; (2) 2500; (3) 5000; (4) 25 000 
plates. The Haarhoff-Van der Linde profiles are identified by squares. 

isotherm, at loading factors of 1% (Fig. 17) and 5% (Fig. 18), for a 2500-plate column. 
In Fig. 18, the band profile derived from the Houghton equation is also shown. It is 
remarkable that at these high values of the loading factor the Haarhoff-Van der Linde 
profile is still in close agreement with the numerical solution calculated with 
a parabolic isotherm. This assumption, however, is unacceptable. Paradoxically, the 
Houghton equation, which is much less correct from a pure mathematical point of 
view, is in closer agreement with the correct profiles predicted by the numerical 
solution, in the case of a Langmuir isotherm, because of the nature of the systematic 
error which was -introduced during its derivation (see above). Fig. 18 explains the 
observation reported by Wade and Carr 52 that better fits of experimental band profiles 
are obtained when using the Houghton equation than with the Haarhoff-Van der 
Linde equation, although the former is less correct, as it does not even conserve mass. 
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Fig. 17. Comparison between the band profiles predicted by the Haarhoff-Van der Linde equation and 
calculated by the numerical solution of the semi-ideal model. Influence of the isotherm. Conditions as in 
Figs. 7 and 8. Column efficiency, 2500 plates; loading factor, 1%. (I) Profile calculated with the numerical 
solution using a parabolic isotherm; (2) profile calculated by the numerical solution using a Langmuir 
isotherm. The Haarhoff-Van der Linde profile is identified by squares. 

Comparison between the analytical solution of the ideal model and the numerical 
solutions of the semi-ideal model 

We now compare the profile given by the analytical solution of the ideal model 
and the profile calculated using the numerical solution of the semi-ideal model (eqn. 
12) for the same isotherm. This will permit a discussion of the validity of the ideal 
model and of the kinetic correction which has been described above. 

Fig. 19 shows a comparison between the two profiles for a Langmuir isotherm, 
with loading factors between 0.5 and 20%. The reduced sample size, m (eqn. 34), varies 
from 7 to 280. The agreement between the two solutions corresponding to the same 
loading factor improves with increasing loading factor. The ideal model becomes 
a good approximation of the actual profile when m exceeds 35, as explained above. 

Fig. 20 compares the profiles calculated by using the numerical solution of the 
semi-ideal model and the analytical solution of the ideal model, for different column 
efficiencies and loading factors, corresponding to a common value of m = 35. The 
agreement between each pair of profiles improves with increasing column efftciency, 
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Fig. 18. Comparison between the band profiles predicted by the Haarhoff-Van der Linde and the 
Houghton equations and calculated by the numerical solution of the semi-ideal model. Influence of the 
isotherm. Conditions as in Figs. 7 and 8. Column efficiency, 2500 plates; loading factor, 5%. (1) Profile 
calculated with the numerical solution using a parabolic isotherm; (2) profile derived from the Houghton 
equation; (3) profile calculated by the numerical solution using a Langmuir isotherm. The Haarhoff-Van 
der Linde profile is identified by squares. 

i.e., with decreasing loading factor at constant m. A similar result has been shown in 
Fig. 4, when comparing the Haarhoff-Van der Linde profile and the solution of the 
ideal model for a parabolic isotherm. It is much more apparent in the present case, 
however. Even at large values of the loading factor (e.g., IO%), there is still a marked 
difference between the solutions of the ideal and semiideal model when the column 
efficiency is poor. 

SOLUTIONS OF THE EQUILIBRIUM MODELS FOR A TWO-COMPONENT MIXTURE 

The main purpose of chromatography is to separate and purify substances, not 
to elute single-component bands. The solution of the single-compound band profile is 
useful because it is the simplest non-linear chromatographic problem, so, if we cannot 
solve it, we cannot possibly discuss properly a multi-component problem. Further, the 
solution of the single-compound problem tells us how high concentration bands 
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Fig. 19. Comparison between the band profiles predicted by the analytical solution of the ideal model and 
the numerical solution of the semi-ideal model. Influence of the loading factor at constant plate number. 
Conditions as in Fig. 1, except corresponding Langmuir isotherm. Column efficiency, 2000 theoretical 
plates. Loading factors (Lr) and reduced sample size (m): (1) O.S%, 7; (2) 1%, 14; (3) 2.5%, 35; (4) 5%, 70; (5) 
lo%, 140; (6) 20%, 280. 

migrate in chromatographic columns and how their profiles are affected by the 
non-linear behavior of the equilibrium isotherm. This solution emphasizes the main 
problems we are faced with when attempting to deal with the second simplest problem 
of non-linear chromatography, the two-component problem. There is one compli- 
cating factor, however, and it is of major importance: under non-linear conditions, the 
amount of one component in the stationary phase at equilibrium with a multi- 
component solution is a function of the concentrations of all the components. The 
solution of the two-component problem therefore requires the consideration of binary 
or competitive isotherms. 

Semi-ideal model 
It is simple and straightforward to extend to the two-component problem the 

formulation of the single-compound problem and to show that, provided the mass 
transfer kinetics are fast enough and the column efficiency exceeds a few hundred 
plates, the elution band profiles of each component will be solutions of the following 
system of partial differential equations: 
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Fig. 20. Comparison between the band profiles predicted by the analytical solution of the ideal model and 
the numerical solution of the semi-ideal model. Influence of plate number at constant reduced sample size 
(m = 35). Conditions as in Fig. 1, except corresponding Langmuir isotherm. Column efficiencies and 
loading factors: (1) N = 10 000, Lr = 0.5%; (2) N = 5000, Lr = 1%; (3) N = 2000, Lr = 2.5%; (4) N = 
1000, Lr = 5%. 

act aql a2c1 dt+F~+u++ az2 

and 

x2 at+ -$+u~=Da- 8q2 a2c2 
a22 

In these equations, q1 and q2 are given by 

9i =.fXCl .Cz) i= 1,2 

(47) 

(48) 

(49) 

Because of the competition between the two components of the mixture for interaction 
with the stationary phase, the two-component problem is much more complex than the 
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single-compound problem. The mass balance equations of the two components, 1 and 
2, are coupled by the binary isotherm equations. 

Thus, neither the analytical solutions of the semi-equilibrium models (the 
Houghton36 and Haarhoff-Van der Linde” equations) nor those of the kinetic 
models (Thomas6, Goldstein’ and Wade et al.* models) can be extended to the 
solution of the two-component problem. The mathematical difficulties to be faced in 
order to solve the system of eqns. 4749 are too formidable to be tackled with 
second-degree partial differential equations. The system of equations corresponding to 
the ideal model (i.e., an infinite column efficiency, and D, = 0 in eqns. 47 and 48), 
which is much simpler, can be solved, however (see next section). Under conditions 
when the ideal model does not give satisfactory results (values of m too small), 
a numerical solution can be obtained by extending the approach described above to the 
system of eqns. 4749. 

Analytical solution of the ideal model 
The solution of the ideal model for two components has been discussed by 

Offord and Weiss53 and by Glueckauf 26 Both obtained very important, but . 
incomplete results. Helfferich and Klein 54 developed a theory of multi-component 
ideal chromatography based on the use of the concept of coherence and of the 
h-transform. They obtained results which are in agreement with those of the shock 
theory2*. Most of their work dealt with the application of this method to the 
investigation of displacement and frontal analysis. They published distance-time 
diagrams which describe the migration process, the dilution and the progressive 
separation of a pulse of a binary mixture, with competitive Langmuir isotherms. 

Recently, we published an analytical solution of the two-component elution 
problem, in the case of binary Langmuir equilibrium isotherms, based on the use of the 
characteristic theory and the shock theory 3 3 We have also been able to derive the same . 
equations from the previous results obtained by Helfferich and Klein, using the 
h-transform method34. Both results are based on the use of the Langmuir competitive 
isotherm equation: 

CliCi 

qi = 1 + &Cl + b2C2 

It has not been possible yet to extend this approach to other isotherm equations, 
however, as was done in the case of the single compound problem32. We have also 
extended to the case of the two-component problem the use of the numerical algorithm 
derived for the solution of the semi-ideal” and the kinetic13 models of chromato- 

graphy. 
In the case of a single solute, with a convex upward isotherm, a concentration 

discontinuity or shock is formed when a rectangular sample pulse enters the column22. 
The continuous, simple wave solution accounts for the rear of the profile. The band top 
belongs to both solutions, the shock and the simple wave 31. It turns out that its velocity 
as a point on the simple wave solution is higher than the shock velocity. Hence, the 
shock is eroded and decreases. With a two-component sample, the situation is more 
complex. The less strongly adsorbed component moves ahead of the more strongly 
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adsorbed component. Two shocks appear, one at the front of the first component band 
and the second at the front of a mixed band. Two simple wave solutions take place, one 
for the pure second component and one for the mixed band. The development of the 
chromatogram and the progressive separation between the two bands can be 
understood by using the shock theory and the simple wave theory, which describe their 
behavior and their interference33. 

A characteristic feature of the solution of the ideal model is the concentration 
plateau on the rear of the second component profile. This plateau had already been 
predicted by Glueckauf?6. It results from the fact that, in the ideal model, a velocity 
can be associated with each concentration. This velocity is a function of the 
concentration22*28 and, with convex upward isotherms, increases with increasing 
concentration. As can be expected, the theory predicts that the velocity associated with 
a concentration of the second component in the presence of the first componer)t 
decreases with decreasing concentration of this first component, when the isotherm is 
a competitive Langmuir isotherm. However, theory predicts that the velocity 
associated with the concentration of the second component tends towards a limit when 
the concentration of the first component tends towards zero at the end of the mixed 
band. This limit velocity is higher than the velocity associated with the same 
concentration of the pure second component. As a result, the second component leaks 
out of the intermediate, mixed band at a constant concentration, hence a concentration 
plateau arises. The length and the concentration of this plateau depend on the feed 
composition; the former increases and the latter decreases with decreasing proportion 
of the second component in the feed. 

The chromatogram includes three zones. The third zone contains the pure 
second component. The rear part of its profile is the same as if the second component 
were alone. It ends at ti.2 + t,. and begins at the concentration plateau. In the second 
zone the two components coexist. The first zone contains the first component, 
confined between the two shocks. 

The analytical solution of the ideal model is relatively simple, but it appears 
complex because it is made of seven different points, four arcs, two concentration 
discontinuities and one concentration plateau (see Fig. 21). The coordinates of the 
seven feature points and the equations of the four arcs are given in Tables I-III, 
together with the definitions of the intermediate parameters used in these equations. 
The order of presentation of the solution emphasizes the fact that the chromatogram is 
anchored at its end (t = ti,2 + tP) and that the solution is progressively derived by 
going backwards, from the end of the chromatogram towards the front. 

Finally, we emphasize here that, if the two bands are separated when they leave 
the column, the profile of the second one is given by the same equation which gives the 
profile of a pure compound, but that the same is not true for thefirst component. The 
first component band conserves forever the memory of its interaction with the second 
component. 

Comparison between the analytical solution of the ideal model and the numerical solution 
of the semi-ideal model 

Fig. 22 shows a comparison between the band profiles calculated for the two 
components of a binary mixture using the numerical solution and the profiles given by 
the equations in Tables II and III (ideal model). The coefficients of the competitive 
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Fig. 21. Analytical solution of the ideal model for two components with competitive Langmuir isotherms. 
Relative composition of the mixture, 1: 1. The coordinates of the points A-G and the equations of curves l-4 
are given in Table I. 

Langmuir isotherms are given in the figure caption. The relative retention of the two 
components under linear conditions would be 1.20. The relative composition of the 
feed is 4: 1. The column efficiency and sample size are such that the reduced sample size, 
m, is 120 for the first component and 30 for the second. The agreement between the two 
profiles is generally good, although some of the important features of the ideal model 
are smoothed out or totally eroded in the semi-ideal model numerical solution. For 
example, the second shock has totally disappeared from the rear of the first component 
profile, and the shock layer on the front of the second component is very thick and is 
also shorter than predicted. Nevertheless the broadening of the second band takes 
place much as predicted by the ideal model, and the result, the tag-along effect, would 
have been unpredictable from the mere consideration of the theory of the single 
compound’protile. Fig. 23 compares the band profiles predicted by the ideal model 
under the same experimental conditions as for Fig. 22, with the numerical solution 
obtained under conditions where m is 24 for the first component and 6 for the second. 
The second component band is now nearly Gaussian and the tirst component band is 
markedly broadened and smoothed. The ideal model. which predicted correctly the 
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TABLE I 

DEFINITIONS 

Langmuir equilibrium isotherms: 

qi = a$&1 + blCl + b2CZ) 
where qi and Ci are the concentrations of component i at equilibrium in the stationary and 
the mobile phases, respectively 

Relative retention: 

a = az/al 

Constant y: 

ab,r, + b2 
Y= 

blrl + b2 

Roots of the Clairaut differential equation: 

They are the roots, rl > rz, of the following equation: 
abIC’$’ - (a - 1 + abIG - b2C’$r - bzq = 0 

Loading factors: 

Lf.2 = 

M”_3, bm b2n2 -= =- 

co -1 
R.2 0 w;,2 - to) &SL&,, 

profiles at high values of the reduced sample size, m, gives a poor approximation at low 
values of m. 

Similarly, Fig. 24 compares the band profiles obtained with the two procedures 
discussed, for a mixture of the same two components as for Fig. 22, but with a relative 
concentration of 1:4. The value of m corresponding to the sample size and the column 
efficiency is 30 for the first component and 120 for the second. There is excellent 
agreement with the profiles predicted by the two methods. The shock layers on the 
front of the two component profiles predicted by the numerical method are very thin, 
thinner than the shock layer at the rear of the first component. The plateau on the rear 
of the second component profile has been smoothed out by diffusion, and an inflection 
at the corresponding concentration is the only trace left. In Fig. 25, the corresponding 
values of m are only 6 and 24 for the first and second components, respectively, and as 
in Fig. 23 the agreement between the two profiles is poor. The interaction between the 
two bands is still obvious by the tail of the first component band. 

Correction for the finite column efficiency 
Using the analytical solution of the ideal model for two components33, 

equations have been derived for the purity, the production rate and the recovery yields 
of these two components, as a function of the experimental parameterP. They permit 
the determination of the feed injection size and the cutting times for the maximum 
production rate of these compounds at any degree of stated purity. 

A correction based on the same principle as that used for the single-compound 
profile has been derived recently 57 This correction permits the investigation of the . 
influence on the production rate of the column efficiency and of the dependence of this 
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TABLE II 

COORDINATES OF THE CHARACTERISTIC POINTS OF THE CHROMATOGRAM IN FIG. 21 

Point Coordinates 

A tA = 1, + 1; 2 
CA=0 ’ 

C 

D 

E 

F 

G 

U-l 
c, =p 

b2 + ub,r, 

t, = t, + 10 + $t:: ’ 

a ’ 
- to) 

a-l 
cc = 

bZ + ablrl 
- 

tD = t, + to + y(t& - to) (1 - JL;,’ 

1 JL’ 
Co =_.I 

&+abiri I - ,JE 

tE = tD 

c 
E 

= [Cl - W4 + Jc 
l-JC 

IF = 11, 

c,= r’ 
I-a+aJE 

b2 + ablrl 1-J; 

The retention time and the concentration of point G cannot be obtained in closed forms. The 
retention time is derived by calculating the lower boundary of the finite integral of the profiles of 
the first component (equations oflines 3 and 4, Table III and Fig. 21). This integral is equal to the 
mass injected of the first component. The concentration is then obtained by placing the retention 
time of the front shock in the equation of line 4. Lr is defined in Table I. 

efficiency on the flow velocity. The selection of the experimental conditions permitting 
the maximum production rate under a certain set of constraints (purity of the products 
or recovery yield) becomes possible. These results are in excellent agreement with those 
obtained from numerical solutions of the semi-ideal model. This confirms the validity 
of our approach57. 
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TABLE III 

EQUATIONS FOR THE CONTINUOUS PROFILES ON THE CHROMATOGRAM SHOW IN 

FIG. 21 

Line Equation 

Line 1, AB 
GB=&p=-- I] 

Line 2, CD 

cr =&[E-1] 

Line 3, C’F 

c1 =&[E-1] 

Line 4, EG 1 a-l 1 
t = t, + to + ct;,, - to) 

(1 + hW 
- Lf.2.-. 

a [(a - 1)/a + biC# 
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Fig. 22. Comparison between the elution band profiles of a two-component mixture calculated with the 
ideal model and with the numerical solution of the semi-ideal model. Langmuir competitive isotherm (eqn. 
53) with a1 = 6, a2 = 7.2, br = 2.5, br = 3.0. Column length, 25 cm; dead time, to = 200 s; column 
effkiency, 5000 theoretical plates; relative composition of the feed, 4:l; sample size, Lf,, = 3.3%, L,,, = 
0.83%. Profiles: (I) first component, ideal model; (2) second component; ideal model; (3) first component, 
numerical solution; (4) second component, numerical solution. 



S. GOLSHAN-SHIRAZI, G. GUIOCHON 

IO 1 1100 1200 1300 1400 1500 1600 1700 11 

Timo (s) 
0 

Fig. 23. Comparison between the elution band profiles of a two-component mixture calculated with the 
ideal model and with the numerical solution of the semi-ideal model. Conditions as in Fig. 22, except column 
efficiency, 1000 theoretical plates. Profiles: (1) first component, ideal model; (2) second component, ideal 
model; (3) first component, numerical solution; (4) second component, numerical solution. 

CONCLUSION 

Considerable progress have been made in the investigation of the fundamental 
problems of chromatography through the use of the equilibrium and semi-equilibrium 
models. There remain a few unsolved problems which deserve attention. 

First, we still needja solution giving in closed form the equation of the elution 
profile of a single compound at large values of the loading factor. What we are really 
missing at present is an equation which would be, at high loading factors, the 
equivalent of the Haarhoff-Van der Linde equation at low sample sizes, an equation 
which would account fully for the thermodynamic effects and correct to the first order 
for the kinetic effects. Barring that, a practical and accurate correction of the solution 
of the ideal model, taking into account the smoothing effect of a finite column 
efficiency, would be highly valuable. 

The two-component problem is much more difficult and less well understood 
than the single-compound problem. An extension to the case of other isotherms of the 
solution of the ideal model for two components which we have derived recently in the 
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Fig. 24. Comparison between the elution band profiles of a two-component mixture calculated with the 
ideal model and with the numerical solution of the semi-ideal model. Conditions as in Fig. 23, except relative 
composition of the feed, 1:4. Profiles: (1) first component, ideal model; (2) second component, ideal model; 
(3) first component, numerical solution; (4) second component, numerical solution. 

case ofcompetitive Langmuir isotherms would be a further great progress. Admittedly, 
any progress in the understanding of the competitive behavior of the components of 
a mixture for adsorption (or, more generally, for interaction with the stationary phase) 
would be very valuable at this stage of development of non-linear chromatography. It 
may be that the lack of understanding of competitive isotherms is the most critical 
hindrance. An analytical solution of the semi-ideal model, valid at high concentra- 
tions, is needed in order to investigate in depth the various problems currently arising 
in connection with the optimization of the experimental conditions of preparative 
chromatography. At the very least, we need also a practical and accurate correction of 
the solution of the ideal model taking into account the effects of the finite column 
efficiency. 

Finally, we have discussed so far only one part of the problem. The mass belance 
equations, the equations of the semi-ideal model, are non-linear, hyperbolic partial 
differential equations. They are non-linear because the coefficient of one of the partial 
differentials depends on the function [i.e., the equilibrium isotherm,AC)]. We have 
searched for solutions of these equations, knowing the function,flC). and as we have 
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Fig. 25. Comparison between the elution band profiles of a two-component mixture calculated with the 
ideal model and with the numerical solution of the semi-ideal model. Conditions as in Fig. 24, except relative 
composition of the feed, 1:4. Sample size, Lr, 1 = 0.83%, Lf,2 = 3.3%. Profiles: (1) first component, ideal 
model; (2) second component, ideal model; (3) first component, numerical solution; (4) second component, 
numerical solution. 

seen it is a difficult task. Far more difficult, both from a theoretical viewpoint and in 
practice, is the converse problem of knowing solutions of the partial differential 
equation, finding access to the function in order to obtain an accurate estimate. This 
problem is at the forefront of mathematical research5*. In many simpler problems, 
direct empirical procedures have been used with some success. The principle consists in 
starting from a crude multi-parameter estimate of the function, calculating the 
corresponding solution and using various computational techniques to minimize some 
measure of the distance between the band profile recorded experimentally and those 
calculated, in order to optimize the values of the parameter. Most probably, this 
approach cannot be entirely satisfactory. Methods having a more sound theoretical 
background are needed. 

SYMBOLS 

A Peak area (eqn. 30a) 
a First coefficient of the Langmuir isotherm (eqn. 19) 
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b 
C 
C(zJ) 

C Max 
G 
co 
ClK2 

c 

G 

D 

DP 
D’ 

D, 

4 
F 

F” 
H 
H aPP 

Hth 

h 

J 

k 
kd 
k 
klkz 

kb 
ke 
L 

Lf 

G 

z 

N aPP 

Ntt, 

n 

second coefficient of the Langmuir isotherm (eqn. 19) 
Concentration of the studied compound in the mobile phase (eqn. 1) 
Concentration of the studied compound in the mobile phase, at time t and 
position z (eqn. 5) 
Maximum concentration in a chromatographic band (eqn. 18) 
Concentration of the studied compound in the stationary phase (eqn. 1) 
Concentration of the compound in the feed (injected sample) (eqn. 5) 
Concentrations of the two components of a binary mixture in the mobile phase 
(eqn. 47) 
Total concentration of the studied compound, referred to the total column 
volume (eqn. 11) 
Concentration of the studied compound in the mobile phase, referred to the 
total column volume (eqn. 8) 
Concentration of the studied compound in the stationary phase, referred to the 
total column volume (eqn. 8) 
Equilibrium concentration in the mobile phase, referred to the total column 
volume (eqn. 8) 
Equilibrium concentration in the stationary phase, referred to the total column 
volume (eqn. 8) 
Coefficient of axial dispersion (eqn. 1) 
Intraparticle diffusion coefficient (eqn. 7) 
Pseudo-diffusion coefficient (eqn. 11) 
Apparent diffusion coefficient (eqn. 12) 
Average particle diameter of the packing (eqn. 7) 
Phase ratio (eqn. 1) 
Volume flow-rate of mobile phase (eqn. 17) 
Column HETP (eqn. 6) 
Observed column HETP (eqn. 44) 
Thermodynamic contribution to the column HETP (eqn. 44) 
Space integration increment in the numerical calculations of elution profiles 
(eqn. 46) 
Longitudinal flux of compound per unit cross-sectional area (eqn. 10) 
Adsorption rate constant (eqn. 2) 
Desorption rate constant (eqn. 2) 
Lumped mass transfer coefficient (eqn. 4) 
Rate constants (eqn. 3) 
Column capacity factor at infinite dilution (eqn. 6) 
External film mass transfer coefficient (eqn. 7) 
Column length (eqn. 26) 
Loading factor for a compound (eqn. 11) 
Auxiliary loading factor (Table I) 
Reduced sample size (eqn. 29) 
Limit efficiency for an infinitely small sample size (eqn. 34) 
Observed plate number of the column (eqn. 41) 
Plate number observed in non-linear chromatography with an ideal column 
(eqn. 38a) 
Sample size (eqn. 17) 
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Concentration of a compound in the stationary phase in equilibrium with the 
concentration C,,, in the mobile phase (eqn. 4); also isotherm equation (eqn. 13) 
Column saturation capacity (eqn. 2) 
Fraction of a solute in the mobile phase (eqn. 11) 
Column cross-sectional area (eqn. 26) 
time (eqn. 1) 
Column dead time (eqn. 15) 
Duration of the injection of the sample (eqn. 5) 
Retention time (eqn. 17) 
Retention time at infinite dilution (eqn. 16) 
Mobile phase velocity (eqn. 1) 
Baseline band width of the band profile predicted by the ideal model (eqn. 38) 
Reduced concentration in the solution of the Houghton equation (eqn. 29) 
length (abscissa) along the column (eqn. 1) 
Inner porosity of the packing particles (eqn. 7) 
Contribution to the longitudinal flux of a compound due to non-equilibrium 
(eqn. 11) 
Packing porosity (eqn. 1) 
Relative deviation from equilibrium (eqn. 8) 
Reduced variable in the Houghton equation (eqn. 28) 
Reduced variable in the Houghton equation (eqn. 28) 
Reduced time in the Houghton equation (eqn. 29); also time integration 
increment in the calculation of elution profiles (eqn. 46) 
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